Trying out code from a talk by Chris Rackauckas
Acausal modeling tool, what does acausal mean?
Replicate some code:
using ModelingToolkit, StochasticDelayDiffEq, Plots, Latexify
@variables t, x(..) # What does the x(..) do?
@parameters a=-4.0 b=-2.0 c=10.0 α=-1.3 β=-1.2 γ=1.1
D = Differential(t)
@brownian η
τ = 1.0
eqs = [D(x(t)) ~ a * x(t) + b * x(t - τ) + c + (α * x(t) + γ) * η]
@mtkbuild sys = System(eqs, t)
prob_mtk = SDDEProblem(sys, [x(t) => 1.0 + t], (0.0, 1.0); constant_lags = (τ,));
display(latexify(sys))
sol_mtk = solve(prob_mtk, RKMil())
plot(sol_mtk)
using Catalyst, DifferentialEquations, Plots, Latexify
rn = @reaction_network begin
@parameters c₁ c₂ c₃ c₄ Ω
(c₁/Ω^2), 2X + Y --> 3X
(c₂), X --> Y
(c₃*Ω, c₄), 0 <--> X
end
display(latexify(rn))
p = [:c₁ => 0.9, :c₂ => 2, :c₃ => 1, :c₄ => 1, :Ω => 100]
u₀ = [:X => 1, :Y => 1]
tspan = (0., 100.)
dprob = DiscreteProblem(rn, u₀, tspan, p)
jprob = JumpProblem(rn, dprob, Direct())
sol = solve(jprob, SSAStepper(), saveat=10.)
plot(sol)
prob = ODEProblem(rn, u₀, tspan, p)
sol = solve(prob)
plot(sol)
using MomentClosure
central_eqs = generate_central_moment_eqs(rn, 2, combinatoric_ratelaws=false)
closed_raw_eqs = moment_closure(central_eqs, "normal")
u₀map = deterministic_IC([1, 1], closed_raw_eqs)
p = [0.9, 2, 1, 1, 100]
oprob = ODEProblem(closed_raw_eqs, u₀map, tspan, p)
sol = solve(oprob)
plot(sol)
using MethodOfLines
import ModelingToolkit: Interval, infimum, supremum
@parameters x y
@variables u(..)
Dxx = Differential(x)^2
Dyy = Differential(y)^2
eq = Dxx(u(x,y)) + Dyy(u(x,y)) ~ sin(pi*x)*sin(pi*y)
bcs = [
u(0,y) ~ 0.f0,
u(1,y) ~ -sin(pi*1)*sin(pi*y),
u(x,0) ~ 0.f0,
u(x,1) ~ -sin(pi*x)*sin(pi*1)
]
domains = [
x ∈ Interval(0.0, 1.0),
y ∈ Interval(0.0, 1.0)
]
@named pde_system = PDESystem(eq, bcs, domains, [x,y], [u])
# dx = 0.05
# dy = 0.05
# discretization = MOLFiniteDifference([x=>dx, y=>dy], nothing, centered_order=2)
# prob = discretize(pde_system, discretization)
# sol = solve(prob)
# xs,ys = [infimum(d.domain):dx:supremum(d.domain) for d in domains]
# u_sol = reshape(sol.u, (length(xs), length(ys)))
# plot(xs, ys, u_sol, linetype=:contourf, title="solutions")
using NonlinearSolve
@variables u1 u2 u3 u4 u5
eqs = [
0 ~ u1 - sin(u5),
0 ~ u2 - cos(u1),
0 ~ u3 - hypot(u1, u2),
0 ~ u4 - hypot(u2, u3),
0 ~ u5 - hypot(u4, u1)
]
vars = [u1, u2, u3, u4, u5]
@named sys = NonlinearSystem(eqs, vars, [])
display(latexify(sys))
sys = structural_simplify(sys)
display(latexify(sys))
display(observed(sys))
u0 = [u5 .=> 1.0]
prob = NonlinearProblem(sys, u0)
sol = solve(prob, NewtonRaphson())
[sol[u] for u in vars]
\[\begin{align}
0 &= u1 - \sin\left( u5 \right) \\
0 &= u2 - \cos\left( u1 \right) \\
0 &= u3 - \mathrm{hypot}\left( u1, u2 \right) \\
0 &= u4 - \mathrm{hypot}\left( u2, u3 \right) \\
0 &= u5 - \mathrm{hypot}\left( u4, u1 \right)
\end{align}\]
\[\begin{align}
0 &= u5 - \mathrm{hypot}\left( u4, u1 \right)
\end{align}\]
4-element Vector{Equation}:
u1 ~ sin(u5)
u2 ~ cos(u1)
u3 ~ hypot(u1, u2)
u4 ~ hypot(u2, u3)
5-element Vector{Float64}:
0.9993449829954304
0.540853367725015
1.1363154317431527
1.2584653852200776
1.6069926947050053
Back to top